$$
\text { (ii) } \begin{aligned}
& x^{2} \frac{\partial^{2} f}{\partial x^{2}}+2 x y \frac{\partial^{2} f}{\partial x \partial y}+y^{2} \frac{\partial^{2} f}{\partial y^{2}} \\
&=n(n-1) f
\end{aligned}
$$

(c) Find the vertices of the skew quadrilateral formed by the four generators of the hyperboloid

$$
\frac{x^{2}}{4}+y^{2}-z^{2}=49
$$

passing through ($10,5,1$) and (14, 2, -2). 20

Section-B

5. Attempt any five of the following :
(a) Consider the differential equation

$$
y^{\prime}=\alpha x, \quad x>0
$$

where α is a constant. Show that-
(i) if $\phi(x)$ is any solution and $\psi(x)=\phi(x) e^{-\alpha x}$, then $\psi(x)$ is a constant;
(ii) if $\alpha<0$, then every solution tends to zero as $x \rightarrow \infty$.
(b) Show that the differential equation

$$
\left(3 y^{2}-x\right)+2 y\left(y^{2}-3 x\right) y^{\prime}=0
$$

admits an integrating factor which is a function of $\left(x+y^{2}\right)$. Hence solve the equation.

